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AbstractmThe standard theory of ideal single-pressure muitiphase fluid dynatmcs is known to be 
ill posed. To regularize this theory we dispense with the constraint of equal pressures for the different 
phases by introducing multiple pressures and quantifies associated with mterface dynamics and 
inertia. Vm the I-tamdtouian formalism, we extend the noncanonical Poisson brackets for the standard 
single-pressure equations to the case of multiple pressures. This formahsm is used to find Lyapunov 
stabthty conditions for the regularized system. The regularized system ts shown to be hyperbohc. 

1. INTRODUCTION 

Multiphase flow involves interpenetration of various material species. Hydrodynamic fluid 
models that describe such systems by using multiple velocity and density fields at a single, 
common pressure (recalled in section 2) are known to be ill posed and possess various types 
of instabilities (see e.g. Gidaspow et  a l .  1973). These difficulties are traced in Holm & 
Kupershmidt (1986) to the assumption of equal pressures for all the different species, in 
the context of the Lyapunov stability method. Here, we propose to regularize this theory 
by dispensing with the constraint of common pressure, which we accomplish by introducing 
multiple pressures, as well as additional phenomenological quantities associated with in- 
terface dynamics and inertia, in the context of the Hamiltonian formalism. 

The idea of regularizing multiphase flow by introducing additional pressures is not 
new. However, our approach and results obtained by reasoning via the Hamiltonian for- 
malism differ from others which introduce, e.g. viscous dissipation as in Arai (1980), 
numerical filtering as in Stewart (1979), surface tension as in Ramshaw & Trapp (1978), 
bubble inertia as in Bedford & Drumheller (1978), or phenomenological interracial pressure 
jumps as in Ransom & Hicks (1984). See also Stewart & Wendroff (1984) for a recent 
review. 

The method used here of regularizing the single-pressure, multicomponent fluid model 
is to extend its Poisson bracket and Hamiltonian to include multiple pressures in such a 
way that the known Hamiltonian structure of the multispecies fluid equations (discussed, 
e.g. in Iwinski & Turski (1976), Kaufman & Spencer (1982) and Holm & Kupershmidt 
(1983)) is recovered in the absence of interface variables. This requirement defines the 
Hamiltonian structure nearly uniquely. When this structure is taken together with the natural 
expression of the Hamiltonian as the total energy of the system, we find the desired motion 
equations for the extended model in section 3. In section 4 we show that for the case of 
two species in one space dimension our system is hyperbolic. In section 5 we use recently 
developed Hamiltonian methods to study the Lyapunov stability of our system for the case 
of two species in three space dimensions. For this case, we show that Lyapunov stable 
equilibrium states of the regularized equations do exist. In section 6, we determine explicitly 
the Lyapunov stability conditions for our extended multiphase model in the example of 
planar, barotropic, two-phase flow. 
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2 THE SINGLE-PRESSURE MODEL 

The single-pressure model of ideal multiphase flow m ~ ~ is described by the equatmns 
(see e.g. Stewart & Wendroff 1984) 

o,p, + div ~ ' v '  = 0, aaJ; + v j v ' ~  = - O , @ ) - q , ' , ,  - ~,,,, 

a,rl* + v' • ~7-~ s = O, 

[l] 

[2] 

where p' = p'O' is the macroscopic density of the sth species, p' is its microscopic density, 
0 ~ is its volume fraction, v' is its velocity, W is its specific entropy, P is the single pressure, 
and ¢b is the potential of an external field. Summation is assumed over all repeated subscripts, 
but not over the species label s. In terms of the macroscopic momentum density M ' = 
p 'v ' ,  the motion equation [Ib] can be written as 

a,M * 4- ( M - ~ I  = -O'  V P  - p* V ~  [3] 
~ p ,  I 'j 

The variables 0 ' ,  s = 1 ,..., N, are to be considered as given functions of {ps,~s } through 
the N relations ~,s=~0~ = 1, PS('pl/Oz,~l) . . . . .  PN('pN/ON,vl N) = P, where ps = 
(ps)2 0e~/ap,, with e ' = e'(p~,~ s) being the specific internal energy of the sth species. 

Equations [1]-[3] can be written in the Hamiltonian form a,F ¢ {HI,FI~ with F E 
I p~,~/~,M ~ } and Poisson bracket I , }l given in terms of these variables in Holm & 
Kupershmidt (1986): 

&/ aI &/ 
+ 

aI  ~ aJ 8./ , 8./ ] 
, [4] 

where the Hamiltonian is the total energy H~,  

H,  = ~ f d " x I ~ ' l a +  p ' e * +  p*@(x) 1 . [5] L 2p' 

Although this model is Hamiltonian, there are two difficulties associated with it. Ftrst, [1] 
and [2] are well known to be fll posed even in the simplest case n = 1, N = 2, where the 
equations are not hyperbolic since they possess complex-valued characteristics as discussed 
in Gidaspow et al. (1973), Ramshaw & Trapp (1978), and Ransom & Hicks (1984). Second, 
for arbitrary spatial dimension n and number of species N the second variation of functional 
whose extremal points are equilibrium solutions of [1] and [2] is indefinite due to the 
presence of the single pressure. Thus, the Lyapunov stability of equilibrium flows for this 
model is prevented, as discussed in Holm & Kupershmidt (1986). 

Both these difficulties with the single-pressure model can be overcome at once by 
allowing multiple pressures within the framework of the Hamiltonian formalism. 

3. MULTIPRESSURE MODEL 

To introduce the multipressure multiphase model, we postulate that: 
(I) The basic dependent variables are {p', M ' ,  ~7'} as in the single-pressure model, plus 

{ 0 ~ }, M ,  o', where O'(x,t) is sth volume fraction, as before, M is interracial momentum 
density, and or is interracial mass density. Thus, the interface velocity w by which the 
volume fractions { O' ] and mass density o" are transported is naturally given by w = 
M/or.  The relation ]~s O" -1 ---- 0 is treated as a nondynamical constraint, i.e. this 
relation if initially satisfied must be preserved by the dynamics. 
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(2) Tensorially, the quantities [0'],  s = l ,  ..., N, and 0- which are transported by the 
interface velocity w = _ M / 0 -  are N scalar functions and a density, respectively, in 
analogy to {-t/'} and [P'I which are transported by the velocity v s = Ms/p s. 

(3) The Poisson bracket {J,I 12 of our system i s the  sum of two pieces: (a) the Poisson 
bracket {J, I I l  in [4] for the variables IM,,ps,~ls}, and (b) the analogous Poisson 
bracket for the variable {M,0",0s}: 

{ J , I } 2  = [J,I] 1 - d"x ~ a:0-~: + ~ O.~, ~: 

+~--~,  0"a,~-o:0-- ,,~+(o,M,+M:a, • [61 

(4) The Hamiltonian of our system, i.e. its total energy, is given by 

I IMI2 ] 
H2 = H I  + f d " x  L2°" + ¢(0") ' [7] 

where c(0-) is the energy density associated with changes of the interracial mass density. 
(The Lie algebraic interpretation of both Poisson brackets [4] and [6] can be found in Holm 
& Kupershmidt (1983).) 

These four postulates produce the following equations of motion, via the rule F = 
{H,F}2 f o r F e  [M s , ~s, 7/,, M, 0-, O~}: 

a,p' + div~,v s = O, a,~' + v s.V~' = O, 

~,v' + (v s • XT)v' = -O'(-p')-IVP ' - V~, 

a,O" + w . X70s = 0 ,  

~,w + ( w  • ~ 7 ) w  - -  - 1 ~.~ p ,  ~ 7 0 ,  _ ¢, ,(0-) ~ 7 0 - ,  
0 -  s 

a,o" + div 0-w = O. 

[8] 
[9] 

[10] 

[11] 

[12] 

Here P '  = P'(-p'lO',~')  is the thermodynamic pressure for the sth species: P' = ~ '10" )  2 
ae'(-p'/O',~l')/o(-p'/O'), where e'  is the specific internal energy of the sth species, and 
is the external potential. Note that [10] preserves the relation E,0 s - 1 = 0. 

For the two-species case, [8] and [9] stay unchanged, while [10]-[12] become, using 
0 1 : 0 , 0 2  : 1 - 0 ,  

a,0 + w • ~70 = 0 ,  

a,w + (w. ~7)w = I__ (e, _ el)XTO _ X7 c'(0-), 
0- 

a,0- + div 0-w = 0 .  

[10'] 

[I1'] 

[123 

For separated flow, [10'] describes transport of volume fraction 0 by the interface with 
velocity w, whose acceleration is given in [1 l'] in the form of Newton's law, with an inertial 
mass density or, which by [12'] is also transported (as a density) by the interface. Equations 
[10']-[12'] were originally proposed by F. Harlow and B. Wendroff and are mentioned in 
Stewart & Wendroff (1984). Recently, Wendroff (private communication) has derived a 
system of equations similar to [8], [9], and [10']-[12'] in one dimension for three-layer 
channel flow for the limit in which the thickness of the intermediate layer tends to zero, 
but the product of thickness times density tends to 0- :/= 0. Thus, Wendroff's treatment 
produces a pressure jump (p2 =/= p1) and equations similar to the present model by treating 
the interface as an additional, hydrodynamically inert fluid, with nonzero mass density and 
transport velocity, but zero volume fraction. 
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Not ice  that  m the case where the first N -  1 species, say, are dispersed m speoes  number  
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N,  [11] wri t ten as 

¥ - 1  

0,w + (w • V)w = I ff.~ (pJv _ POVO* - ~7 ~'(o') [I I"] 
O"s= l 

also has the form of the Newtoman force law for interface acceleratmn. 
Conserved quantities for the full system [8]-[12] in three dimensions are 

C ~ = f d 3x -p* F*(rl',qO. [13a] 

In [13a], the  quan t i ty  q~ defined by 

q, = ( ~ , ) - t  curl v s • Vr /*  [13b] 

Is the macroscop ic  potent ia l  vor tmity  for the s t h  species, which satisfies 

0, q~ + v* • ~Tq s = 0 ,  [13c] 

and  F '  are a rb i t r a ry  functmns.  
Add i t i ona l  conserved quant i t ies  of the  same form are 

K s = f d a x  o"  G*(Q*,O0, [14a] 

where the q u a n n t y  Q ' ,  defined by  

saUsfies 

Q,  = o - - l  curl w • ~7 0s , 

o,Q' + w . V Q  s = o ,  

and  G" are a rb i t r a ry  funcuons.  

[14b] 

[14¢l 

0,o " ~  + d l v o ' a a w  ~a = 0 ,  0tqb~ + w ~ s . ~ 7 q b ~  = 0 ,  

0,waa + (waa . ~7)wa~ = (o -~a) - I  (p# _ pa)vqbaa - ¢oa,,(o-~a)Vo.=~ 

[15] 

0,v, + ( v s .  ~7)v,  = ( ~ s ) - l ~  + ~ d p , a ) V p , _ ~ 7 ~ p ,  

otp s + d i v p ' v  ' = 0 ,  0,r/* + v ' .~7"t /*  = 0 ,  

Remark. In the mult ispecies  case with N > 2, the not ion of interface velocity w may  
be general ized for any  pair  of ad jacen t  mater ials ,  by in t roducing  N ( N  - 1)/2 interface 
velocities w ~B = wa% a : / :  /3, where a a n d / 3  take values l ,  2, ..., N.  Cor responding ly  
t r  a~ = o - ~  are the mass  densit ies associa ted to the interfaces; and  a n t i symme tnc  variables 
~b ~ = -~b ~ are in t roduced  such tha t  0 ~ - 1 / N  = X ~)so.  The moUon equat ions  for the 
new system (no sum on repeated  superscr ip ts  unless explici t ly s ta ted)  are 
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E"(o') _> O, (22] 

which is a natural requirement for an internal energy. Thus, the muitipressure model m 
one space dimension has all real characteristics with, in general, distinct eigenvalues when 
[22] holds strictly. Hence, the system [8]-[12] is hyperbolic. 

5 L Y A P U N O V  S T A B I L I T Y  C O N D I T I O N S  F O R  S T E A D Y  A D I A B A T I C  S O L U T I O N S  

I N  T H R E E  D I M E N S I O N S  

Now we will show for the two-species case that extremal points of the sum 

2 

Hc = H2 + 2 (C s + Ks),  
S=I 

[23] 

wath H 2, C ~, K s, given m [7], [13a], and [14a], respectively, are eqmlibnum states of the 
multipressure multiphase equations [8]-[12] in three dimensions. Stability of these steady 
states is then investigated by studyang the conditions for definiteness of the second variation 
of H o  denoted ~ 2 H  C, evaluated at the equilibrium state. Note that 82Hc is preserved by 
the linearized equations about the equilibrium point (see e.g. Holm et al 1985, appendix 
A). Thus, when 82Hc is definite in sign, it defines a conserved norm, m which the hneanzed 
equations are Lyapunov stable; see Abarbanel et al. (1986) and Holm et al. (1985) for 
examples of Lyapunov stability analyses using Hamiltonian structure m other cases of fired 
dynamical theories. 

In three dimensions for the two-species case (n = 3, N = 2), the steady states [p~, 
~2, v~, v~, o'~, 0r, wr, qq~, 7/21 (where 0~ = 0r, 02 = 1-0r,  since X, 0~ = 1) of the 
multipressure multiphase equations [8]-[12] and their implied equations [13c] and [14c] 
satisfy the relations 

0 = dlvp~v~, [24a] 

0 s s [24b1 = V e ,  ~ 7 ~ e  , 

0 = (v~.V)v~ + O~(pO-'VP: + V ~ ,  [24c] 

o = w , .  V O ~ ,  [24d] 

0 = (we. V)we + 1 (p~_p2¢)~70r + VE,(crr) ' [24e] 
Or 

0 = div O'rWr , [24f] 

0 = v~. Vq~, [24g] 

0 = we. VQr [24h] 

By virtue of the identity (v. W)v = -v  X curl v + ½~7~v[ 2, [24c] and [24e] can be rewntten 
a s  

) 0 = v~ × cur lv~-  ~7 v,] + h i +  ~ + T~7"~ [24c'] 

and 

I1 2 1 1 V ~tw~{ + ¢'(o'~) + - - ( P 2 - P ~ ) V O ~ ,  
(lre 

0 ---- we × curl we - [24e'] 
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respectively, where hl = e'(p~/0~, ~,) + P~Oi/p[ and T~ = ae'(~/0[,  ~',)/a~/'~. In turn, 
[24c'] and [24e'] imply, using [24b] and [24d], that 

vl • ~7(~[VlJ2 -d - hl -I- ~ ) = 0 ,  [25a] 

Sufficient conditions for these two relations [25a,b] to hold are the existence of functions 
K~(~, q~) and L(O,, Q,) (the superscript "1" on 0, and Q, is dropped for the two-species 
case) such that 

~1 $ 3 s v~l ~ + hl + • = K (.t/~,q,) 

1 2 
~lw, l  + ~'(o' , )  = L(O,,Q,), 

[26a] 

[26b] 

as can be seen from [24b], [24g] and [24d], [24h], respectively. The relations [26a,b] are 
analogs for two-phase flow of Bemoulli's law. 

Vector multiplication of [24c'] (resp. [24e']) by ~7~  (resp. ~70,) gives the following 
relations, provided q~ =~- 0 and Q, =J= 0: 

o' ,w,  = ~, ,  V O ,  x ~7 lw,l ~ + c' (o' , )  . 

[27a] 

[27b] 

Use of the relations [26a,b] then gives 

- 1 
' ' : K~V~I × ~Tql [28a] P eVe : p q~ 

o-,w, = -~ L eVOe × VQ, , [28b] 

where K~q : = aK" (~,,~) / aq[ and L a: = aL (0 ,,Q,) / a Q ,. Similarly, vector multiplying [24c'] 
by ~Tq~ and [24e'] by ~TQ,, and using relations [28] gives 

~Tqi" curl vl _ T:-K~,  [29a] 
~7~I" curl vl K~ 

~TQ,. curl we o'~I(P2-P~)-Lo 
- [29b] 

~70," curl We L¢ 

These relations will be useful in demonstrating the following proposition. 
P r o p o s i t i o n .  A smooth equilibrium solution [p~, vl, ~ ,o ' , ,  we, 0~; s = 1, 2, with gQ,  

=/= o} whose velocities v~, we are tangential to the (fixed) boundary of the domain of flow 
is a critical point of Hc in [23], provided the following relations hold at equilibrium: 

Ks(w~,ql) + Fs('tl~ql) - qIPq(~'ll,ql) = O, 

L(O,,Q,) + G(O,,Q,) - Q,Go(O,,Qe) = o ,  

[30a] 

[30b] 

where F '  and G appear in Hc and are given in [13a] and [14a], respectively. 
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Remark. The relauons [30a,b] connect the functions P and G to the Bemoulh functmns 
K ~ and the Long functmn L m [26a,b]. The relations [30a,b] define nondegenerate (e.g 
nonstaUc, nonpotential) equdibrium flows 

Proof. We write exphotly the conserved functmnal [23] as 

Hc = d3x -o-)w[ 2 + ~(0") -4- crG(O,Q) 
J 

2 

F - - s  

[311 

where D is the domain of flow and h.', A are constants (separated out for convenlence 
below in [33a,b]). After integrating by parts, we have the following expression for the first 
variation 8H c ; 

4- 8w.[0"w + GooVQ × V0]  + ~ 8 v ' [ p ' v '  + F~qVqS× V'O'] 
s 

+ ~Sp'[~v '12 +h' (~ ,r l~)  + dP'x ' - t -F"~ ' ,q"-q~F" l 

+ 80[P 2-P' - curl w-VGo(Q,O) + o'ae(Q,O)] [32] 

+ ~8~'[p '(e,~ + F~) - VF~.  curl v'] 

+ ~ (Go+A)(-Sw x V0 + 80 curl w).fi clS 
, D  

+ ~ ~D (F; + h ' ) ( -Sv '  × ~ r / s  + 8~'  curl v 0 . f i d S ,  

where dS is the surface element on the boundary 0D and fi is ~ts umt normal vector. For 
Hc m [31] to have a critical point for steady flows, the steady-state relations [24a-hi must 
cause each coefficient and the boundary terms to vanish, provided F and G satisfy conditions 
[30a,b]. By relations [25a,b] and the tangency to the boundary of v~ and we, all the 
equilibrium quantities 0,, Q,, rl~, q~ are constants on the boundary. Hence, by choosing 
the constants X' and A according to 

c Q ( O , , O , L o  + h = 0 [33a] 

F ~ ( ~ q ~ D  + h* = O, [33b] 

the boundary terms will vanish at equilibrium. 
The remaining coefficients in [32] vanish for stationary flows by vlrtue of the two 

relations [30a,b] of the proposition as follows. The 8p • and 8o" coefficlents vamsh by [30a] 
and [30b], respectlvely. Upon differentiating [30a] with respect to qe, we get 

K ¢.~q,.,( "- ") = F~(rlgqO " [34] 
q'. 
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Therefore, the 8v ~ coefficient in [32] vanishes for steady flows by [26a] and [28a]. Similarly, 
differentiating [30b] with respect to Q~ implies 

L¢(O, ,Q, )  = Goo(O+,Q,) " [351 
Q+ 

So the 8w coefficient in [32] vanishes for steady flows by [26b] and [28b]. Next, upon 
substituting [30a] into it, the 87/~ coefficient in [32] vanishes by relations [29a] and [34]. 
Similarly, the 80 coefficient vanishes upoon substituting [26b] into it and using [29b] and 
[35]. Thus, Hc in [31] has a critical point for equilibrium solutions when relations [30a,b] 
of the proposition hold. 

The second variation of Hc at equilibrium 8~Hc ]s given by the quadratic form 

82Hc 

+ 

+ 

f d3x{o-,18w + o-2~w~8ot 2 + (E"(~) -  O ' e l I W e [ 2 ) ( 8 0 " )  2 

2GoStrSO + 2GQ curl 8w. \780 + 2cr,Geo808Q 

tr~Goo(80) 2 + o'~G~(SQ) 2 ] 

- (p+) Iv, l [36] + 
$ t 

p~(B') z 8 -I- (.BO-Ze~)8vl' + 2(e~+ FOS-p*8~s + 

+ 2F~ curl 8v*.~78~/~ + 2"p~qS~Sq ~ 

-n~Ie' [e+r~l z 1 - + r L ~-~--fl-7] + F ~  (8v/02+ p~F~q(Sq~) 2 

where 

+ + + 0 0  

p~Sq ~ = -q~Sp ~ + curl 8v~.~7~ d- curl v~.~(78v/s , 

with an analogous expression for o'+SQ. Throughout, G, F +, and their derivatives Go, etc. 
are to be evaluated at equilibrium, and (~,)2 = (O~c~/~)~, with (c~) 2 = aP~/a(p~/O~) 
being the square of the sound speed for the sth species. 

A given flow characterized by the functions F * and G will be linearly Lyapunov stable 
in the class of smooth solutions, provided F ' and G satisfy the conditions required for the 
integrand of 82Hc in [36] to be positive definite. [See Holm et al. (1983; 1985) for detailed 
explanations of this technique for finding Lyapunov stability conditions.] 

The derivation of the conditions for definiteness of the quadratic form in [36] is standard, 
but the explicit conditions are too complicated to be illuminating at this stage. In the next 
section, the corresponding Lyapunov stability conditions are studied for the simpler case 
of planar barotropic two-phase flow. We simply state at this stage that Lyapunov stable 
equilibrium states of the regularized equations [8]-[12] in three dimensions do exist provided 
(1) the gradient of the volume fraction and the gradients of the specific entropy for each 
species remain bounded in a manner determined by equilibrium flow quantities, and (2) 
certain other stability conditions are satisfied, as determined by Sylvester's criterion for 
definiteness of the quadratic form in [36]; see Holm et al .  (1985) for discussions of such 
stability conditions in a number of fluid models. Moreover, the quadratic form in [36] 
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reduces to its counterpart for adiabatic flow of a single fluid m three dimensions when the 
two fluids move together as one, Le. when 

1 
V 1 : V 2 = V, 0 1 = 0 2 - -  

2' 
l 1 

, 7 '= ,7  8 0 = 8 w  8 =o 277, = , Z 

and w, o., Q are absent. In that case, the conditions for Lyapunov stability are given m 
Holm et al. (1985). 

6 L Y A P U N O V  S T A B I L I T Y  A N A L Y S I S  F O R  P L A N A R  B A R O T R O P I C  T W O - P H A S E  F L O W  

In this section we consider two-dimensional barotropic two-phase flow taking place in 
a domain D c ~z~i 2 m the x - y  plane. For such motion to remain planar, each of the dependent 
variables {~s, v ,, o', 0, w I must be a function only of (x,y,t), and v ' ,  w, and ~70 must lie 
in the x - y  plane so that curl v ' and curl w will be directed normally to the plane along 
i .  The equations of motion [8]-[  12] for this situation become 

0rp S = -d iv  psv '  , [37a] 

>t o,v ~ = - (v  s ' V ) v  ' - ~7 h* + ~(x,y , [37b] 

o,o" = -d iv  o'w , [37c1 

o,0 = - w .  V O ,  [37d1 

o,w = - ( w .  V ) w  + I (P 2 - P 1 ) V O  - V ( ( o ' )  , [37e1 
o" 

where 0 ~ = 0, 02 = 1-0 for 0 ~, s = 1, 2, and h*('p' /O ') is the specific enthalpy of the 
sth phase, obeying dh ' (  p~/O r) = (0 s / p ' )  dPs (p~ /00 ,  with P~ the pressure of the sth phase 
and ep(x,y) an external potennal. The natural boundary con&tions are 

v s . f i  = 0 ,  w . f i  = 0 ,  ~ 7 0 × f i  = 0  o n 0 D ,  [37q 

where fi is the umt vector lymg in the x - y  plane in the direction of the outward normal 
to the boundary 0D. These boundary conditions imply energy conservaUon for the quantity 
H in [42]. Taking the curl of the motion equations [37b] for v ~, rewritten as 

O,v* = v ~ × curl v s - ~7 v*l 2 + h ~ + dp(x,y , [38] 

and using the continuity equations for ~s leads to the advected quantities fV, s = 1,2, 
satisfying 

(~t + vs" ~7) f l s =  0, f l ' =  ( ~ 0 - ~ . . c u r l  v s , [39] 

i.e. H ~ is constant along the flow lines of the s th species. 
In view of [39] for H s and the continuity equation [37a] f o r t  s, as well as the analogous 

set up [37c] and [37d] for the pair (8,o'), the functional 

[40] 
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is conserved by the barotropic planar two-phase multipressure equations for real-valued 
functions F s and G such that the integrals exist and the solutions are smooth (1), would 
be created at a discontinuity either in velocity or in macroscopic density). Another conserved 
quantity is the following functional, with ~ = ~. • curl w; 

, c,(g,o) = fo dxdy ~(o) [411 

for an arbitrary function ~/(0). Conservation of C ,  is analogous to Kelvin's theorem. Indeed, 
we find directly that 

= - o g~(o )w.a  + ~ ( o ) ( ~ - - - ) t  x V o . a  ds ,  

which vanishes by the boundary conditions [37f]. Kelvin's theorem for the contour on the 
boundary corresponds to the case ~(0) ---- 1 in [41]. Finally, the total energy of the barotropic 
planar flow is conserved because it is the Hamiltonian of the system [37], namely, 

2 

+ ~,a,~y)]. 
[42] 

the equilibrium states { ~ ,  v~, o',, 0,,  w, } of the system [37] in the x-y  plane are the 
steady, planar, barotropic, two-phase flows. Such steady flows satisfy 

0 = div p~v[, [43a] 

0 = v~. V f l ~ ,  [43c1 

0 = div o' ,w,,,  [43d] 

0 = - to ,~  X w, - V [w,I 2 + E'(o',,) + -~-(P,-P,)VO, [43e] 
Or e 

0 = w, .  ~ 7 0 , ,  [43t"] 

where the quantities 

~ ---- ~. curl v~ = p~fl~, [43g] 

~ ,  = ~.. curl w , ,  [43h] 

are the scalar vorticities. The steady equations [43] imply various relations among the 
equilibrium states. According to [43b] and [43c], the gradient vectors V[½i~] 2 + 
h'(p~/O~) + ~(x,y)] and Vf l~  are both orthogonal to the equilibrium species velocity 
in the plane. Consequently, these two gradient vectors are collinear, provided neither they, 
nor the velocity vanish. A sufficient condition for this collinearity is the functional rela- 
tionship for each s: 

1 / ~ \  
~ 1  ~ + h , l " q  + ~(~,y)  = r.<n;) [44] 

~o,,1 L 
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for certain functions K s, s = 1, 2. These are called the Bernoulli functions and [44] represents 
Bemoulli's law for each phase. Likewise, [43e] and [43t] imply collineanty of V[~w,,~ ~: -, 
c'(o',)] and V 0 , ,  for which a sufficient condition is 

1 
~[w,I 2 + ¢'(o',) = K(O,) 1451 

for another Bernoulli function K 
Vector multiplying [43b] by i and using [44] gives 

so that div - s  p, v e = 0 and 

co,v,s s = i × VK,(II~) [461 

For this, it is sufficient that 

so that 

1 
_---[o-,K'(0,) + P~-P~ = L(O,) [50] 
COe 

for some function L(O,). Relation [50] is analogous to Long's equation in stratified fired 
flow (see e.g. Abarbanel et al. 1984; 1986). Note that [48] and [50] imply 

o-,w, = L(0e)t X V 0 , ,  

L(O,) = o ' ,w, .~  × V 0 ,  [52] 
IV02  

These relations among equilibrium states will be useful in proving the follovang propomion, 
analogous to that in the previous section for the three-dimensional case. 

Proposition. Equilibrium solutions { p~, ~,  o 'o w,, 0, } of the planar barotropm two- 
phase equaUons [37a-el satisfying boundary conditions [37t"] and co~e =#= 0, X70e =#= 0 are 
critmal points of the functmnal 

Hc = H + C~,~ + C, + A f dxdy-~ + ~ Xs f dxdyco" 
s 

composed of the sum of the conserved quantities given in [40]-[42], provided F ", G, and 
are determined by 

_ $ $ t $ - -  K ' ( f l I )  + F'(n'.) n . F  (fie)-- 0 ,  

G(Oe) = -K(O.) , 

q,'(O.) = Z ( O . ) ,  

[53a] 

[53b] 

[53c1 

[511 

K s'(II~) - '  s p , v , . i  × VA~ 
n------~, -- ~Tfl:l 2 ' [47] 

provided co*, ~711~ =#= 0. Likewise, vector multiplying [43e] by ~. and using [45] gives 

For div(o',w,) in [43d] to vanish requires, upon substitution of [48] into [43d], that 

~- × V 0 e "  V 1 ( ~ , ) - '  [o ' ,K ' (0 , )  + P~-P2]I = 0 [49] 
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where, for particular steady states, K S and K are the Bernoulli functions in [44] and [45], 
respectively, L is the Long function in [50], and where A and h '  are constants determined 
by the constant values of Oe and I~ on the boundary oD. Conversely, a critical point of 
Hc is an equilibrium solution. 

Proof. The conserved functional Hc in the proposition is given explicitly by 

2 

+ dxdy p'lv'] 2 + pSe* + p ' * ( x )  + -psF*(nx) + h*i .cur l  v* , 
s = l  

where D Is the domain of flow and h s, A are constants separated out from the functions 
F s and @ for convenience. After integrating by parts, the first variation of Hc evaluated 
at the equilibrium state becomes 

8Hcle: = DHc( p~., v ~., 0-,,We, O ~). (Sps,Sv S,80-,8w ,80) 

+ 8w. [0-~w~ + ~'(0~)~70~ × i ]  

+ ~ S v  ~. -s s ~. , • i ]  [p,v, + F (n,)~Tn~ × 
[54] 

o:, 

+ +..o,0.> + 1 

- ~ (A+d~(0,))~. X 8w.fids 
" - a  

D 

s D 

where ds is the line element on the boundary 0D and fi is its unit normal vector in the 
plane. The boundary terms each vanish upon choosing A and h '  so that 

A + q,(0.~oo = o ,  

$ t $ _ _  x. + F ( n . t , o -  o ,  

which is possible since 8, and ~ are constants on aD by [43c], [43f], and the boundary 
conditions [37t"]. The remaining coefficients in [54] each vanish upon imposing the conditions 
of the proposition and the equilibrium relations: the 8~ S coefficient vanishes by [53a] and 
[44]; that of 80- vanishes by [53b] and [45]; that of 8v S by [53a] and [46]; that of 8w by 
[53b] and [51]; and, finally, the 80 coefficient vanishes by [53c] and [50]. Conversely, if 
8He vanishes for some flow and the relations [53] hold, one derives the relations [37a-f], 
so that the flow is stationary. 
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The second variatmn of Hc at the eqmlibnum state is 

w 
8 2 H c  = D2Hc( p~, v~, Or,,,W,,Oe). (Sp~,SV*,80",SW,SO) : 

= f~ dxdyIo'~tSw[: + 2w~ • 8w80" 

+ d'(o-,XSo-): -e 2G'(O,)SOS(:r 

-4" [OreGtl(Oe)-~--'~e I'[/1/(0e)](80)2 + 21[J'(0 e)8(,0801 
[55] 

- -  2 -F "7 / / x s \ \  / + ( p ~ )  l ( O s ) 2 ( C s ) 2 / S / F '  I |  - ~  s t ,  .~ s 2 p , F  (fle)(812) , 

where 8w  = z • curl 8w and 82~ ~ = -2 (p~) - lSf~ 'Sp '  have been used, and (c~) 2 = 
- - $  s oP'~/ o( p,/ O ,). If 82Hc in [55] has a definite sign, it must be positive, smce-p~ > 0. 

Equilibrium states for which 82Hc is positive definite are linearly Lyapunov stable. 
That is, a positive defimte 82Hc can be used as a norm that bounds the deviation from 
equilibrium under the hnearized dynamics. Indeed, the value of 82Hc is preserved by the 
dynamics of the equations linearized about the equilibrium state, since 8:Hc Is the Ham- 
iltonian for the linearized dynamics (see e.g. Abarbanel et al. 1986, appendix C). Thus, for 
positive definite 82Hc, a perturbed state initially near the equilibrium state will remain near 
to It m the sense of the norm defined by 82Hc . This means the equilibrium is Lyapunov 
stable under the linearized dynamics whenever 8 2 H  c is positive definite. (A conserved norm 
can be defined for negatwe definite 82Hc as well, of course, but this is not the sltuatmn m 
the present case.) 

If, further, the conserved functional Hc is convex, then the eqmlibrium state will be 
nonlinearly Lyapunov stable, Le. finite amplitude deviations from equihbrium will remain 
near the equilibrium in the sense of a norm that bounds the deviations of Hc from its 
eqmlibnum value. See Holm et al. (1985) for further theoretical details and examples of 
how to establish nonhnear Lyapunov stability conditions using convexity arguments and 
the Hamiltonian formalism of ideal fluids and plasmas. 

Sufficient conditions for 82Hc in [55] to be positive definite are found by determining 
when the integrand in [55] is positive definite as an algebraic quadrauc form in (8o', 8w, 
80, 8p ' ,  8v0. Expanding ( 8 ( p ' / 0 0 )  2, using ~ , 6 0 '  = 0, and compleung the square among 
the 8D,' terms m [55] gives 

+ o-,18wl ~ + T 1 . [56] 

Here T is defined to be 

T = fo dxdyi("(or,)(8o')2 + 2G"(0,)8o'80 + A(80) a + 2w,.SwSo" 
2 

2 

[57] 



A MULTIPRESSURE REGULARIZATION FOR MULTIPHASE FLOW 695 

where the following coefficients have been introduced: 

a = -~,~"(o,)  + or ,a"(o, )  + 
p,(c , )  ~d -$  $ 

~:i (0~,) 2 l 

(cD 2 
a ,  - , [58] 

0~ 

(c~,) 2 
Y ~ -  ~; 

Let F'"(fl~) > 0 and or, > 0 in [57]. Then for 82Hc in [56] to be positive definite, the 
quadratic form T in the integrand [57] needs to be positive semidefinite. This is possible, 
however, 6 ~ y  if t~'(0,) = 0, since the only term in T containing 8 ~  is 2d?'(0,) 8~80 .  By 
[53c], [43f], and [52] it follows that w, = 0. Upon setting t~'(0,) = 0 and w, = 0 in [56] 
we find, by sequentially completing squares in [57], that 82Hc is positive definite under 
the conditions 

F~"(I'I~) > 0 ,  

p ~ > 0 ,  

or,> O, 

~"(or,) > O, 

(cO 2 - Iv~P > o ,  
2 

--s a s ) 2  

: ( c ~ . l = j  

[59] 

[6Oa] 

[60b] 

[60c] 

[61] 

(G'(0,)) 2 > O, [62] 

whereA, a*, and Y' are given in [58]. Stability conditions [60] are self-explanatory. Condition 
[61] requires that the flow be subsonic for each species. The last condition [62] can be 
rewritten using [58], [53b], and [48] for w, = 0 as 

[62'] 

Condition [59] can be understood by noting that [47] and [53a] imply 

_ _ _  _ peVe" z X V I~ ~ [63] 
n ;  1~7n~l  2 

Consequently, condition [59] holds when v~, i ,  and ~712~ form a right-handed triad. 
Example. Subsonic shear flows. A steady eqmlibrium solution of the planar barotropic 

two-phase equations [43] in the strip {(x,y) ¢~21Y~ <_ y < y2 I is a plane-paraUel flow 
along the x axis admitting the velocity profiles v~ = (vs(y), 0), densities p~ = ps(y),  
volume fraction 0, = O(y), or, = or(y), and w~ = 0. Given the profiles v~(y) and p*(y) 
one finds that 

l ) ' ( y )  = (p*)-l~,. curl v ' ( y ) i  

= - ( - ~ ' ) - ' v " ( y ) .  

[64] 

For the present case, -~7 ~, = (v*'l'pg' ~, so [59] requires that 

F , " ( n : )  - -  F'u_____~" > O. [651 (v" / F')' 
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When ~s = const for s = 1, 2, the stability condiUon [65] reduces to the reqmrement 
v'v ~" > 0 for both species, Le. it reverts to the classical inflection point crttenon due to 
Rayleigh. From this example, the conclusion is that for stability of a multlphase flow, both 
of the speoes velocities must satisfy [65], i.e. both species must be mdlwdually stable 
according to classical fluid mechanics, and, m addition, the combined properties of these 
individually stable flows must be governed by [62'] 

7 CONCLUSION 

We have regularized single-pressure multlcomponent fluid dynamics by extending its 
Polsson bracket and Hamiltonian to include multiple pressures in such a way that the 
known Hamiltonian structure of the multispecies fluid equations is recovered in the absence 
of interface variables. The motion equations for the extended model include transport 
equations for interface variables that can be interpreted as belonging to an additional flmd 
with zero volume fraction, but finite mass density corresponding to the interfacial inertia 
that enables the fluid pressures to differ across the interface. We have shown that the 
extended model provides a hyperbolic regularization of the ill-posed single-pressure model. 
Moreover, we have shown that Lyapunov stable equilibria exist for the extended system in 
three dimensions, and found explicit Lyapunov stability conditions for the extended model 
in two dimensions by characterizing a certain class of equilibria for the model as critical 
points of conserved Lyapunov functionals. 
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